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Metamaterials and metasurfaces have inspired worldwide interest in the recent two decades due to their
extraordinary performance in controlling material parameters and electromagnetic properties. However,
most studies on metamaterials and metasurfaces are focused on manipulations of electromagnetic fields
and waves, because of their analog natures. The concepts of digital coding and programmable
metasurfaces proposed in 2014 have opened a new perspective to characterize and design metasurfaces
in a digital way, and made it possible to control electromagnetic fields/waves and process digital
information simultaneously, yielding the birth of a new direction of information metasurfaces. On the other
hand, artificial intelligence (AI) has become more important in automatic designs of metasurfaces. In this
review paper, we first show the intrinsic natures and advantages of information metasurfaces, including
information operations, programmable and real-time control capabilities, and space–time-coding strategies.
Then we introduce the recent advances in designing metasurfaces using AI technologies, and particularly
discuss the close combinations of information metasurfaces and AI to generate intelligent metasurfaces.
We present self-adaptively smart metasurfaces, AI-based intelligent imagers, microwave cameras, and
programmable AI machines based on optical neural networks. Finally, we indicate the challenges,
applications, and future directions of information and intelligent metasurfaces.
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1 Introduction
In the past two decades, metamaterials have attracted wide-
spread attention all over the world and have been fully studied
in various fields due to their unparalleled capabilities in manipu-
lating material parameters[1–3]. In the early stage, metamaterial
research was focused mainly on the control of effective medium
parameters based on bulk structures in three-dimensional (3D)
versions, driven by the enthusiasm on negative refractions[4–7],
invisibility cloaks[8–15], and perfect/super lenses[16–20]. However,
3D metamaterials usually have high loss and fabrication com-
plexity, which apparently limit their further developments and
applications. Therefore, the idea of a planarized metamaterial
design was proposed and gradually formed the concept of

metasurfaces[21–24], which can be regarded as two-dimensional
(2D) versions of metamaterials. Metasurfaces not only possess
the powerful control abilities of 3D metamaterials but also have
the advantages of an ultra-low profile, easy fabrication, and low
loss. In 2011 and 2012, the generalized Snell’s law was pro-
posed based on a metasurface[22,25], showing a new method to
delicately tailor the reflection and transmission of electromag-
netic (EM) waves. This work successfully inspired researchers
to design metasurfaces using their phase and amplitude dis-
tributions and also stimulated abundant applications such as
ultrathin cloaks[22,24,26],holograms[27,28], planar optical lenses[29],
polarization converters[22,30,31], absorbers[32–34], and vortex-beam
generators[27,35]. Because of the above-mentioned advantages,
metasurfaces significantly expand their application ranges, in-
cluding wireless communications[36–40], EM imaging[41–43], satel-
lite antennas[44–46], cloaking[26,47–49], and so on. Based on passive
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metasurfaces, tunable[50–55] and reconfigurable[56–64] metasurfaces
dynamically promote the aforementioned application scenarios.

Traditional metasurface studies are based on continuous
scales to design their EM properties, which can be attributed
to analog metasurfaces. With the establishment and wide appli-
cation of the Von Neumann computer system, the representation
of modern information is inseparable from digital binary coding.
To explore the possible connection between metasurfaces and
digital information, the concept of digital metasurfaces was pro-
posed in 2014[65,66] by two groups independently. Giovampaola
and Engheta presented a discrete structural design method for
the digital design of metasurfaces[67], but this concept is still lim-
ited to the digital digitization of the equivalent medium param-
eters and is hard to connect with the coding streams of digital
information. On the contrary, Cui et al. proposed to characterize
metasurfaces using the digital codes “0” and “1” (with opposite
phase responses) instead of medium parameters, and to control
the EM fields and waves using different coding sequences, pro-
ducing digital coding metasurfaces[66]. The digital coding se-
quences are exactly connected with the coding streams in the
digital information. More importantly, an active meta-atom
was designed to switch digital states “0” and “1” in real time.
After all possible coding sequences and their EM functions are
pre-computed and stored in a field programmable gate array
(FPGA), the digital coding metasurface has become a program-
mable metasurface[66], in which many different EM functions
can be performed on the same platform and switched in real time
through FPGA. The coding sequence, on one hand, is the con-
trolling command to perform the specific EM function, and on
the other hand, it is a digital stream, which is modulated on the
EM function. Hence the programmable metasurface can control
EM fields and waves in real time and modulate digital informa-
tion simultaneously. This unique feature has directly evolved
into a new branch of metasurfaces—information metasurfaces,
which was first proposed in 2017[68] and developed in 2021[66].

Digital coding, programmable, and information metasurfaces
have successfully bridged the EM physical world and the digital
information world[69,70]. Based on their unique features, various
functions, devices, and systems of information metasurfaces
have been achieved[71–75], such as orbital angular momentum
(OAM) generators[67,76,77], spatial modulators[33,78–82], nonrecipro-
cal devices[83,84], smart and self-adaptive beam scanners[85,86],
intelligent imagers[87–90], and microwave cameras[87,88]. In the
early stage, the form of coding was limited to encoding of
the reflection phase, but it was rapidly extended to amplitude
coding[33,78,91], polarization coding[67,79,80], OAM coding[67], and
frequency coding[92]. The working frequency of the digital cod-
ing metasurface has also been increased from the microwave
band to the terahertz frequency[93–95]. In the meantime, a wealth
of theories[96–98] and applications[99–101] have emerged. One im-
portant direction is the combination of information metasurfaces
with traditional information theory. The convolution theorem of
the digital coding metasurface was proposed in 2016[97], and im-
plements a fast design and calculation method for arbitrary spa-
tial beams and provides a reference for information computing.
In the same year, information entropy theory was presented
for digital coding metasurfaces[96], which provides an effective
analysis method for information entropy calculation for both
digital coding patterns and scattering patterns of EM waves.
As an extension, a general EM information theory was devel-
oped[102,103], giving the constraint of the digital information and
EM information, as well as information capacities. Another

important dimension of information metasurfaces is temporal con-
trol, from which time-domain digital coding metasurfaces[82,104,105]

have emerged. Time-domain coding makes it possible to freely
control the frequency spectra of scattering waves in a program-
mable way[82,100,104–109]. Combining space-domain and time-domain
coding together, space–time-coding digital metasurfaces have
been presented[82,100,104–109], which can manipulate both spatial
beams and frequency spectra simultaneously in real time. One im-
portant application of information metasurfaces is to build new
architectures for wireless communication systems. In 2018,
Cui, Liu, and Bai proposed a direct information transmission sys-
tem based on a programmable metasurface[99], which can realize
real-time image transmission based on 1-bit programmable units.
Since then, many kinds of researches have been conducted for
new-architecture wireless communications based on time-coding
and space–time-coding digital metasurfaces[39,40,81,84,108,109], opening
a direction for developing new wireless communication systems.
On the other hand, the real-time reprogrammable feature of in-
formation metasurfaces can be used to control and tailor the wire-
less channel and EM environment. Such metasurfaces are also
named as reconfigurable intelligent surfaces[38,110–115] in the wire-
less communication community, and have emerged as a promising
path to optimize spatial energy efficiency in a disorganized EM
environment.

Parallel to the developments of metasurfaces, as the ultimate
direction of information and digitization, artificial intelligence
(AI) has also received extensive attention in recent years.
Since the AI board-game-Go program (AlphaGo)[116] developed
by Google DeepMind beat Lee Sedol, who is one of the best
players in the world, in 2016, AI has gained exponential growth
of attention and has been applied to ever-increasing varieties of
fields. AI technology aims to study the way of making machines
imitate the action and decision-making process of human beings
to solve intelligent problems. The basic problem of AI is how
to let a machine learn the experience from collected data or in-
teract with the environment, and therefore, a variety of machine-
learning and deep-learning algorithms have been developed[117].
Artificial neural networks (ANNs) have proved to be able to han-
dle various intelligent tasks, such as speech recognition[118–120],
image recognition[121–123], automatic translation[124–126], image edit-
ing[127–130], and robot control[131–133]. Due to its unparalleled spe-
cialty, AI has been integrated into metasurface structure and
function designs. In 2017, Zhang et al. exhibited a method to
design a metasurface unit using the machine-learning algo-
rtithm[134], in which the pixeled metallic structure of the metasur-
face element can be automatically designed for arbitrary phase
responses. The idea was promoted by Qiu et al. in 2019[135], in
which an efficient method based on deep learning was reported.
In addition to these studies on building unit structures with pixel
blocks, Ghorbani et al. proposed to construct unit structures based
on eight basic patterns[136], in which the deep-learning method
was used to rapidly design the EM wave regulations in the case
of dual polarizations. In 2018, Inampudi andMosallaei developed
a meta-element design method using the neural network for sur-
face metal structures based on polygonal patterns[137]. The struc-
tural intelligent design method was also extended to acoustic
metamaterials[138], where the cylindrical structure is divided into
five layers with different radii to obtain desired transmission co-
efficients, which are analyzed by a probability-density-based neu-
ral network. In addition to being used for the automatic design
of metasurface elements, the machine-learning algorithm was
also integrated into information metasurfaces to perform more
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intelligent tasks. In 2019, Li et al. presented a reprogrammable
metasurface imager using principal component analysis (PCA)[89].
High-accuracy EM imaging was demonstrated, including recon-
structions of handwritten digits and through-wall body gestures.
Based on a programmable metasurface and PCA algorithm, the
imaging system was apparently simplified with low cost[89,90].
Along this line of research, an intelligent imager and recognizer,
also called a microwave camera, was further developed to per-
form more precise and customized imaging[87]. By applying a
series of CNN algorithms, the system is able to recognize the
hand signs and vital signs of multiple people in experiments with
good performance.

In the AI community, besides machine-learning and deep-
learning algorithms, physics-informed neural networks driven
by partial differential equations have been rapidly developed,
showing great potential in solving classical problems such as
fluid mechanics and quantum mechanics[139]. Also, the graph
neural network[140], benefiting from its highly extensible con-
necting structure, has become a superexcellent framework to
absorb physical mechanisms and yield state-of-the-art perfor-
mance in particle-based simulations[141]. With the advancements
of AI, the scale of artificial neuron networks has a trend of be-
coming more and more enormous, requiring higher demands for
computing power and promoting the development of computing
hardware. Nowadays, the speed of executing AI frameworks has
been an important performance index for graphics processing
units (GPUs). Although GPUs are very suitable for general
AI calculations, they are expensive, bulky, and power consum-
ing for edge deployment. Since 2015, different specific AI chips
with low power consumption and high performance have been
developed[142,143] for executing AI computing workloads with

energy-efficient approachs[144], but they have fixed functional-
ities. Besides electronic-based AI chips, neuromorphic comput-
ing based on nanophotonics has gained more and more attention
inspired by its natural characteristics of parallel and light-speed
computing[145], and consistent efforts have been made to bring
neuromorphic photonics towards the realization of fully func-
tional neuromorphic networks[146]. All-optical diffractive deep
neural networks (D2NNs) as well as related theoretical methods
have been developed for higher parallelism and lower energy
consumption[147–153]. Following this path, some programmable
methods to establish a more general computing machine have
been investigated[154–156].

To better show the mutual developments of metamaterials
and AI and their integration, we summarize a development time-
line for the above two areas, as shown in Fig. 1. In the early
days, artificial materials and AI were two independent research
directions. Although the concept of metamaterials was proposed
as early as in 1967, its extensive study started in 1996. The re-
search of machine learning emerged around 1980, and it re-
ceived worldwide attention after the deep-learning algorithm
was proposed around 2010. Metamaterial and AI technologies
such as machine learning have been continuously integrated
during this period and formed some new sub-directions. With
the development and fusion of information metasurfaces in re-
cent years, intelligent metasurfaces have emerged, which in-
clude the integration of machine-learning algorithms into
information metasurfaces and using multi-layer information
metasurfaces to build the hardware of neural networks, resulting
in all-optical D2NNs and programmable D2NNs, as illustrated
in Fig. 1. To clearly indicate the timeline of the typical works in
information, we add a timeline with the detailed references and

Fig. 1 Development of metamaterials, artificial intelligence, and their integration to result in
intelligent metamaterials.
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pictures. Please note that the timeline is not strictly linear on the
time scale.

In this paper, different from previous review papers on meta-
surfaces[157,158], we focus on the recent advances in information
metasurfaces and their integration with AI, the intelligent meta-
surfaces. We first introduce the developments of digital coding,
programmable, and information metasurfaces, including their
concepts, information operation theories, real-time and reprog-
rammable controls of EM fields and waves, space–time-coding
modulations, and applications in wireless communications.
Then we discuss the relationship between metasurfaces and
AI technologies, which helps automatic designs of metasurface
elements and metasurface patterns. Especially, we investigate
intelligent metasurfaces to achieve close combinations of infor-
mation metasurfaces and AI technologies, including self-adap-
tively smart metasurfaces with self-decision ability, AI-based
intelligent imagers and microwave cameras, and programmable
AI machines based on wave diffraction for neuromorphic com-
puting with highly parallel features and efficiency. Finally, we
give the challenges, potential applications, and future directions
of information metasurfaces and intelligent metasurfaces.

2 Information Metasurfaces

2.1 Concept and Theories of Information Metasurfaces

The concept of information metasurfaces originated from digital
coding and programmable metasurfaces[66], and combines digital
information and physical meta-structures. Most previous re-
search on metamaterials and metasurfaces has focused on the
material characteristics and function realization, but is rarely
discussed from the perspective of information science. The dig-
ital coding metasurface offers us a new angle to characterize the
metasurface in a digital way and control the EM function by a
spatial coding sequence[66,70,97,159,160]. Therefore, abundant coding
theories, digital meta-atom designs, and programmable EM ma-
nipulations have been proposed, which gradually construct the
academic and application systems of information metasurfaces.
Among these theories and applications, the scattering field ex-
pression of the digital coding pattern, convolution theorem, and
information entropy of information metasurfaces established the
core methods for other expansive applications, which will be
discussed in detail in this subsection. For more information,
please refer to two in-depth review papers on information
metasurfaces[68,70].

For the phase coding metasurface with certain digital bit
states, the phase distribution on the metasurface can be ex-
pressed as a digital matrix, as shown in Fig. 2. When the meta-
surface is illuminated by a plane wave, the scattered field can be
expressed as
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n�1
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j
�
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sin θ sin φ

��
; (1)

where Dx and Dy are element dimensions along x and y axes,
and M and N are element numbers along x and y axes, respec-
tively; φ�m; n� is the reflective phase response of the element in
the specific location �m; n�.

The convolution theorem of the information metasurface[97],
inspired by signal processing theory, presents flexible scattering-
field transformations and manipulations using the coding pattern
superposition. As shown in Fig. 2, the scattered fields [Fig. 2(d)]
of the cross-coding pattern and gradient-phase coding pattern
[Fig. 2(c)] are distinct, which, respectively, are five beams in
the upward direction and a deflected single beam. The superposed
coding pattern of the cross and gradient phases is generated in
Fig. 2(c), whose scattered field then combines the characteristics
of both patterns, transforming the five beams in the deflected
direction of the gradient phase pattern. This is similar to the con-
volution theorem for two signals, operating a frequency shift in
the frequency domain. More interestingly, based on the above
method, a more flexible coding pattern calculation is derived
according to the equation

(
θ � arcsin

� 																																
sin2θ1 � sin2θ2

p 

φ � arctan �sin θ1∕ sin θ2�

; (2)

where θ and φ are synthetic scattering angles, and θ1 and θ2 are
scattering angles of two original coding patterns. These equations
mean that arbitrarily deflecting angles can be synthetized by us-
ing the convolution theorem of digital coding metasurfaces. This
method enriches the coding pattern operations and establishes the
connection between the phase pattern on the metasurface and far-
field scattered fields, promoting more research to focus on the
digital operating manners in EM fields. Also, the convolution op-
eration facilitates on-site solutions for beam-scanning and multi-
beam manipulations.

To theoretically define the information property of informa-
tion metasurfaces, the concept of information entropy of the dig-
ital coding metasurface was reported[96]. The digital coding
pattern is first analyzed from the perspective of geometrical in-
formation entropy (for a digital stream), as shown in Fig. 2(f),
since the coding pattern can be regarded as a pixelated image
and corresponds to the digital stream. After a fast Fourier trans-
form (FFT), the digital coding pattern is transformed into the
related scattering pattern, which is related to the physical en-
tropy of the scattering field, as depicted in Fig. 2(g). The rela-
tionship between the geometrical information entropy and
physical information entropy is investigated. For example, a
periodic coding pattern such as “01010101…” reflects mainly
the scattering energy in two symmetrical directions, whose
physical entropy is relatively low. When the coding pattern
gradually becomes randomly distributed with high geometrical
entropy, the physical entropy of the scattering pattern is corre-
spondingly increased. This information definition for a digital
coding metasurface paves an important road for investigating
the information capacity and information bounds of information
metasurfaces[102,103].

2.2 Programmable Metasurfaces

The first benefit of the digital coding representation to a meta-
surface is making the EM controls be in real-time and the EM
functions reprogrammable, because EM fields and waves are
manipulated by the coding sequences or coding patterns on
the metasurface. Most previous works of coding metasurfaces
are based on passive structures, whose functions are fixed after
fabrication. In contrast, programmable metasurfaces can recon-
figure the EM structure by integrating active devices such as
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diodes and varactors, thereby achieving various functions. Other
tunable materials such as liquid crystal and graphene, or other
mechanical methods can also achieve programmable metasurfa-
ces. In fact, various programmable metasurfaces have been
presented in the past few years[68,70], and have realized reprog-
rammable holograms, scattering control, time-domain modula-
tion, and so on. Recently, with the emergence of novel physical
effects in topology research, programmable topology devices
have attracted much attention. Here, we detail a recent work:
a reprogrammable plasmonic topological insulator[75].

At present, most photonic topological insulators can achieve
only specific static topological EM functions, and their recon-
figurability is limited[161–163]. In addition, the existing static
photonic topological crystals can form waveguide paths only
on the topological boundary surface[164,165], which wastes the
huge internal space of photonic topological crystals, limiting
the compactness and miniaturization of topological optoelec-
tronic devices. In future practical applications, to improve

the integration and reduce design and manufacturing costs,
topological optoelectronic devices will inevitably be developed
in the direction of multi-functional monolithic integration. For
this reason, researchers continue to explore reconfigurable pho-
tonic topological insulators. Recently, many reconfigur-
able photonic topological insulators have been realized by me-
chanically or thermally changing their geometrical or material
parameters[166–171]. However, in practical engineering applica-
tions, once most of the photonic topological crystals are proc-
essed, their geometric and material parameters are not easy to
change. Recently, You et al. reported a field-programmable
topological EM metasurface based on surface plasmons[75], as
shown in Fig. 3(a). Based on the programmable topology plat-
form, dynamically regulated topological protection waveguide
paths are realized, and the switching time for different topologi-
cal waveguide paths can reach 10 ns. Compared with the pre-
vious mechanical control method, the switching speed increases
by 2 × 107 times.

Fig. 2 Theories of information metasurfaces. (a), (b) Characterization of metasurface by digital
coding and its scattering features. (c)–(e) Convolution operation of the digital coding meta-
surface, from the coding-pattern domain to the scattering-pattern domain. (f), (g) Information en-
tropy of the digital coding metasurface, offering the information measurement from the coding
pattern to the scattering pattern. (a), (b) Adapted from Ref. [66], Copyright 2014, with permission
from Springer Nature, licensed under CC-BY-NC-SA 3.0. (c)–(e) Adapted from Ref. [97],
Copyright 2016, with permission from Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
(f), (g) Adapted from Ref. [96], Copyright 2016, with permission from Springer Nature, licensed
under CC-BY-NC-ND 4.0.
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To realize electrical programmability, the honeycomb-
arranged unit structure contains six symmetrically distrib-
uted positive–intrinsic–negative (PIN) diodes, as depicted in
Fig. 3(b), and each unit has four coding states (0, 1, 2, 3),
as presented in Figs. 3(c)–3(f). By controlling the switching
state of the diodes using FPGA, the spatial symmetry of the
cell structure can be regulated. At the same time, by configur-
ing the coding regions with different shapes, various types of
topological region boundary lines are constructed. In addition,
each unit of the reprogrammable EM metasurface has a

dynamic encoding function; thus, it can dynamically switch
the topological waveguide paths with different shapes at high
speeds, so as to realize arbitrary customization of the EM
topological paths and high-speed control functions.
Compared with the existing reconfigurable photonic topologi-
cal insulators, each unit of the reprogrammable topology meta-
surface has an independent electronic-control coding function,
and hence the control accuracy and speed are beyond the
reach of traditional reconfigurable photonic topological
insulators[166].

Fig. 3 Principle of the reprogrammable plasmonic topological insulator and the experimental dem-
onstration. (a) Schematic of the reprogrammable topological insulator, where each unit can be
programed by FPGA to establish distinct topological routes. (b) Detailed structure of a 2-bit unit
cell, in which six PIN diodes are integrated on the six branches. (c) Four typical states when differ-
ent on–off states are applied, encoded as units 0, 1, 2, and 3. (d) Band diagrams of a crystal with
the designed 2-bit unit cell. (e) First Brillouin zones of units 1 and 2. (f) Topological phase transition
and valley–chirality properties of units 1 and 2. (g)–(i) Measured near-field distributions of three
typical topological routes. Adapted from Ref. [75], Copyright 2021, under a Creative Commons
Attribution 4.0 International License.
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To verify the high-speed dynamic control characteristics of
the programmable topology waveguide, a multi-channel digital-
to-analog converter is designed on the field-programmable
topology metasurface. As shown in Figs. 3(g)–3(i), the multi-
channel digital-to-analog converter has four waveguide ports,
and port 1 is excited by a sine-signal wave with a frequency
of 7.2 GHz. By dynamically encoding different topological
waveguide paths, high-speed switching of output ports 2, 3,
and 4 can be realized, thereby directly discretizing the input
analog–signal wave into different digital signals at the output
ports. Experimental results show that the switching time of the
programmable topology waveguide can reach 10 ns. Compared
with the existing mechanical regulation method, the regulation
speed is increased by 2 × 107 times. In addition, since only one
signal channel is opened in each time period, the interference
between different channels is negligible. This low cross
talk feature plays a vital role in actual high-fidelity digital
communications.

2.3 Space–Time-Coding Digital Metasurfaces

Earlier digital coding and programmable metasurfaces concen-
trated mainly on spatial coding. Recently, time-domain coding
and space–time-coding digital metasurfaces have been pre-
sented to explore new degrees for controlling the frequency
spectra and increasing information capacity. EM wavefronts
can be tailored more flexibly from both space and frequency
dimensions by using space–time-coding metasurfaces[82]. A con-
ceptual diagram of the space–time coding metasurface with
M × N programmable coding elements integrated with PIN
diodes is demonstrated in Fig. 4(a). The EM responses of the
programmable coding elements are tailored via FPGA accord-
ing to an optimized 3D space–time-coding matrix, in which
each element is not only space modulated but also time modu-
lated. Hence, the harmonic distributions and propagation direc-
tions of EM waves can be simultaneously manipulated, and
correspond to spectral and spatial properties, respectively. As
shown in Fig. 4(a), a monochromatic beam of frequency fc can
be reflected into different beams at different harmonic frequen-
cies fc � kf0 and specific propagation directions, which are
realized by the designed space–time-coding metasurface
with temporally modulated frequency f0. The far-field scatter-
ing patterns at the generic kth harmonic frequency can be
expressed as

Fk�θ;φ��
XM
m�1

XN
n�1

Emn�θ;φ�apqv

× exp

�
j
2π

λc
sin θ��m−1�dx cos φ��n−1�dy sin φ�

�
;

(3)

where dx and dy are the element periods along x and y direc-
tions, respectively; λc is the central operation wavelength;
Emn�θ;φ� is the scattering pattern in the generic (m; n)th
element; θ and φ are elevation and azimuth angles, respectively;
and
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�
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�
−j k�2l − 1�

L

�
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is equivalent complex amplitudes. Here, Γmn
l is space–time

distributions of the local reflection coefficients with period L.
The space–time coding matrix [Figs. 4(b) and 4(c)] can be
defined and optimized so as to deflect each harmonic fre-
quency toward a predesigned direction by using the above
theory. Figures 4(d)–4(i) illustrate the distributions of the
equivalent complex amplitudes (magnitudes and phases)
and the corresponding harmonic scattering patterns, in which
both amplitude-modulation (AM) and phase-modulation (PM)
schemes are adopted. We observe that the AM scheme pro-
vides more uniform magnitude distribution but lower effi-
ciency, while the PM scheme based on space–time gradients
provides higher efficiency but rather unbalanced magnitude
distribution among the harmonics. It is worth pointing out
that, working with the 1-bit coding scheme, beam steering
is possible only at harmonic frequencies, but not the central
one. This restriction can be removed by using higher-bit cod-
ing schemes, such as 2-bit coding.

Based on the fact that digital programmable metasurfaces
can transmit digital messages without using complicated ra-
dio-frequency (RF) chains (e.g. mixers, antennas, and filters)
in wireless communications, a new wireless communication
scheme of space- and frequency-division multiplexing was fur-
ther presented by using space–time-coding metasurfaces[81], as
shown in Fig. 5(a). Different digital data streams are simulta-
neously transmitted to multiple designated users at different
locations using different harmonic frequencies produced by
the space–time-coding digital metasurfaces, hence implement-
ing space- and frequency-division multiplexing wireless com-
munications. More importantly, it is difficult to recover the
correct information for unspecified users even if sufficiently
sensitive receivers are used to receive all transmitted informa-
tion. This feature ensures the security of wireless communica-
tions using the simple platform. A dual-channel wireless
communication system based on the space–time-coding meta-
surface is fabricated to verify the feasibility of the space- and
frequency-division multiplexing scheme, as illustrated in
Fig. 5(b). The transmitter of the wireless communication sys-
tem is composed of a control platform, a microwave signal
generator, and a space–time-coding metasurface fed by a horn
antenna; the receiver is composed of two horn antennas at θ �
−34° and θ � 34° (serving as two users), downconverters, a
software-defined radio (SDR) receiver, and a post-processing
computer. Two transmitted color pictures are first translated
into two different bitstreams by an on–off keying (OOK)
modulation scheme and then mapped to the corresponding
space–time-coding matrices. The transmitted data are reflected
towards two directions (θ � −34° and θ � 34°) via different
harmonic frequencies (fc � f0) simultaneously when the
transmitted data are modulated by the space–time-coding
metasurface with the corresponding space–time-coding matri-
ces. The modulated waves can be received independently by
the two horn antennas, and the two transmitted pictures can
be accurately recovered via the SDR receiver. However, the
transmitted pictures cannot be recovered even if the two
horn antennas (user 1 and user 2) can receive EM waves
with high-transmission powers if they are located at un-
desired positions. The proposed space- and frequency-division
multiplexing wireless communication system based on the
space–time-coding metasurface has great potential in future
6G applications.
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3 Metasurfaces and Artificial Intelligence

3.1 Intelligent Designs of Metasurfaces

How to design a metasurface is one of the most important topics
in this community, which includes designing meta-atoms and

the whole metasurface. An unabridged metasurface consists
of many subwavelength meta-atoms to exhibit various novel
physical phenomena[172–174]. The basic problem for metasur-
face design is to optimize meta-atom structure parameters to
achieve the desired reflection and/or transmission properties.
However, it is difficult to directly analyze the EM responses of

Fig. 4 Space–time-coding digital metasurface. (a) Conceptual illustration. (b), (c) Examples of
space–time coding matrices for harmonic beam steering. (d)–(g) Distributions of the equivalent
magnitudes and phases based on amplitude and phase modulations. (h), (i) Corresponding
far-field scattering patterns at harmonic frequencies for AM and PM. Adapted from Ref. [82],
Copyright 2018, under a Creative Commons Attribution 4.0 International License.

Ma et al.: Information metasurfaces and intelligent metasurfaces

Photonics Insights R01-8 2022 • Vol. 1(1)



meta-atoms, especially digital meta-atoms, because of the EM
coupling effect and active devices inside the meta-atoms[175–177].
The canonical design process of meta-atoms depends on

full-wave simulation software using numerical algorithms to de-
rive their EM characteristics and the intuition of experts to adjust
the structure parameters, which would consume a large amount

Fig. 5 Space- and frequency-multiplexing wireless communication system based on the space–
time-coding metasurface. (a) Conceptual illustration. (b) Experimental scenario. Adapted from
Ref. [81], Copyright 2021, under a Creative Commons Attribution 4.0 International License.
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of time and experience. Moreover, when a similar meta-atom
with different EM responses is re-designed, the above optimi-
zation process has to be repeated from scratch, inspiring people
to reflect on whether there exists an auto-learning technology
that could extract past experiences to accelerate the design pro-
cedure. A rudimentary approach involves using computer algo-
rithms such as a genetic algorithm (GA) together with
simulation software to automatically design the structure of
meta-atoms[134,178,179]. This is basically a trial-and-error procedure
depending on a mass of simulations, but the fully manageable
execution by a computer will save a lot of time for researchers.
The main defect of this process is that the preceding simulation
samples have not been fully used, and a brand-new procedure
needs to be called if the optimization target is changed. From
here, it would be very natural to think about exploiting the
powerful learning capacity of deep-learning methods to make
full use of the existing data to accelerate the whole design
process[180–185]. Existing data could be gathered from past simu-
lation work, and most researchers would choose to specifically
make a training dataset by simulations and/or experiments for
the learning process. The preparation for training data does con-
sume a lot of computing resources, but it is once and for all if the
deep-learning networks are well trained. After that, the design
process for meta-atoms with similar types could be extremely
accelerated. The simulation process to gain training data is usu-
ally a fully manageable procedure executed by computers, and
could be manyfold speeded up by multi-threads or distributed
computing.

In this section, we discuss the intelligent designs of metasur-
faces using machine-learning technologies. Before the metasur-
face is designed to fulfill a specific function, its meta-atom
should first be designed to satisfy the required EM responses.
Since the scale of the problem for the overall design of a meta-
surface is usually much bigger than that for a meta-atom, the
intelligent designs of meta-atoms have gained more attention,
and have been developed faster than the intelligent overall de-
sign of metasurfaces. Even so, recently there have been various
works of intelligent designs for metasurface arrays, which
present higher accuracy and efficiency than canonical
methods[48,88]. For this consideration, both intelligent designs
of meta-atoms and metasurfaces will be demonstrated.

3.2 Meta-Atom Design Using Artificial Intelligence

One of the most significant matters for machine learning or deep
learning is to tell the computer the form of the problem, in other
words, to make the computer comprehend the problem. For the
intelligent design of meta-atoms, the first step in the optimiza-
tion process is inputting the geometry of the meta-atom into a
computer. For meta-atom design, it is highly discouraged to di-
rectly input the CAD model of meta-atoms because the CAD
model is not intuitive to deal with and has a great deal of redun-
dant structure information. The recommended way is to param-
eterize the structure of the meta-atom and enable the structural
parameters as optimization variables. Similarly, it is equally im-
portant to define the target of the optimization process in the
form of a target function or error function. The process of pre-
dicting the value of the target function when giving the structure
of meta-atoms is called the forward process. Accordingly, the
process of generating the structure of meta-atoms automatically
when giving the design objective is called the inverse process.

The most common optimization targets for meta-atom design
are the desired S-parameters or complex reflection and transmis-
sion coefficients in specific frequency ranges. The optimization
targets could be easily represented by discrete sampling points
organized in vectors, which are different in sampling amounts
and corresponding spectra according to practical use. In the con-
ventional design process, the wideband S-parameters or com-
plex reflection/transmission coefficients of a meta-atom are
obtained by running full-wave simulations on commercial sim-
ulation software such as CST Microwave Studio, and the sim-
ulation process takes the vast majority of time in an optimization
procedure. For this reason, it is a worthwhile attempt to accel-
erate the simulation process through deep-learning methods.
These deep-learning methods use various ANNs to learn the re-
lationship between structural parameters of a meta-atom and its
discrete EM responses. These ANNs are called forwarding neu-
ral networks or prediction neural networks (PNNs). The learn-
ing process of PNN is a black-box fitting process; hence, the
network structure of PNN has a high degree of freedom with
diverse convolutional neural networks (CNNs)[186] or recurrent
neural networks (RNNs)[187]. Empirically speaking, the quality
and quantity of the training dataset determine the upper limit
of the prediction accuracy, and the network structure of PNN
determines to what extent the upper limit can reach.
Therefore, it is encouraged to try diverse kinds of PNN struc-
tures with different numbers of layers/nodes, activation func-
tions, and connection types among layers, until the desired
prediction accuracy is obtained. Since the appropriate structure
of PNN relates to specific problems and training datasets, our
discussion of PNN will not pay much attention to the network-
structure design but will concentrate on the parametrization
methods of the meta-atom’s geometry and its function com-
bined with the inverse design methods in the whole intelligent
design process.

We start from the intelligent designs of digital coding meta-
surfaces by means of classical machine-learning methods.
Zhang et al.[188] combined binary particle swarm optimization
(BPSO)[189] with commercial EM software to automatically find
the paired or tetrad meta-atoms with constant phase differences
for reflected waves, as shown in Fig. 6(a). The main issue of this
fully manageable method is the way to represent the meta-atom
geometry. Inspired by the idea of digital coding, the meta-atom
made of four-fold symmetric 16 × 16 square sub-blocks[188] is
represented by a 16 × 16 binary matrix, where 1 or 0 indicates
the corresponding sub-block covered with or without the metal,
respectively. This coding representation makes the usage of
BPSO possible. Depending on the application programming in-
terface (API) of the commercial software, CST Microwave
Studio, the BPSO method executed in MATLAB could obtain
broadband reflection phases of the current meta-atoms. Then the
fitness value and speed of particles could be calculated to indi-
cate the update of meta-atoms. As a result, a pair of meta-atoms
sharing the reflection phase difference between 170° and 190° in
the frequency band from 9.5 GHz to 10.3 GHz is finally ob-
tained, as illustrated in Fig. 6(b). The reliability of this optimi-
zation result was experimentally verified by using the digital
coding metasurface composed of these paired meta-atoms in
realizing beamforming applications. Zhang et al. also showed
that this method could be extended for automatic design of
16 ganged meta-atoms with 22.5° phase difference to achieve
circularly or elliptically shaped radiation beams[188]. In another
work on machine-learning optimization, Samad et al. used
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the adaptive GA (AGA) to automatically design meta-atoms
consisting of binary gold patterns with four-fold symmetry in
generating specific reflection coefficients[178]. It is also worth
noting that research on the multiple mode coupling effect be-
tween adjacent meta-atoms designed by AI is quite important
to the accurate manipulation of EM response. The efficiency of
metasurfaces may be further improved when meta-atoms are
automatically designed and arranged by AI in considering
the coupling effect[190,191]. For example, different Bloch waves
and propagating waves are carefully manipulated by means of
the coupling effect between meta-atoms, hence realizing the de-
sign of perfect anomalous reflectors. The related research of the
coupling effect between adjacent meta-atoms may further help
the AI designs of meta-atoms and high-efficiency metasurfaces.

As a classical iterative machine-learning method, reinforce-
ment learning[192] shows its powerful utility by learning the cur-
rent update direction from interaction with the environment.
With the development of deep learning, a novel reinforce-
ment-learning method called a double deep Q-learning network
(DDQN)[193] was developed to accelerate the learning process,

and is related to how to efficiently explore the given optimiza-
tion space to reach the design target in the least time. Recently,
Sajedian et al.[194] proposed to use DDQN in meta-atom design,
aiming to find the unit structures covering all transmission
phases simultaneously with the highest efficiency, as shown
in Fig. 6(c). They designed 16 different update actions including
the change of materials and adjustment of unit size. By inter-
action with numerical simulations, this DDQN can learn an op-
timal update strategy and find the optimal results in only 2169
update steps among nearly 5.7 billion possible candidates,
which significantly reduces simulation times compared with
the BPSO or AGA methods.

These machine-learning methods (BPSO, AGA, and DDQN)
can be classified as heuristic algorithms, which share the advan-
tages of simplicity and effectiveness. Their drawback is obvious,
due to the large expenditure of time and computational resour-
ces. Even though, it is still worth trying to apply them in meta-
surface optimization because they have a low barrier to be used,
and their automatic running procedure does not need supervi-
sion from a human being, which means that researchers could

Fig. 6 Intelligent designs of meta-atoms. (a) Flowchart of the BPSO algorithm together with the
CST Microwave Studio. The BPSO algorithm controls the update of meta-atoms, and CST pro-
vides the reflection phases of the current meta-atoms. (b) Models and reflection phases and am-
plitudes of the paired meta-atoms with 90° phase difference. (c) Flowchart of DDQN method used
to optimize the meta-atoms. The DDQN model predicted the optimal current update actions of
meta-atom structure and material parameters by learning from the interactions with numerical sim-
ulations. (a), (b) Adapted from Ref. [188], Copyright 2017, with permission from Springer Nature,
under a Creative Commons Attribution 4.0 International License. (c) Adapted from Ref. [194],
Copyright 2019, with permission from Springer Nature, under a Creative Commons Attribution
4.0 International License.
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do something else in this process and thus save much time and
energy.

The efficiency of the above-mentioned machine-learning
methods is encumbered by the time-consuming simulation pro-
cess executed in commercial EM software, especially when the
scale of the problem is large. Luckily, as the by-products of
these methods, large datasets are generated and can be used
as ingredients for deep-learning methods to train ANNs[178].
Further work conducted by Zhang et al.[180] trained a CNN to
predict the reflection phases of two-fold anisotropic meta-atoms
at specific frequencies when the coding metasurface is radiated
by transverse-electric (TE) and transverse-magnetic (TM) polar-
ized waves. The zero-one representation of digital meta-atoms
provides a natural parameterized method for meta-structures and
could be directly used as inputs of CNNs. After the training pro-
cess, CNN could predict the reflection phases in several milli-
seconds with high accuracy and replace the function of the
commercial software in the optimization process, as shown in
Fig. 7(a), which accelerates the whole BPSO procedure by least
three orders. In fact, the prediction process of CNN is so fast
that the global random search methods could be used to search
the whole parameter space to find solutions. As an example,
Christian et al.[181] trained a PNN to predict the S-parameters
of an all-dielectric metasurface consisting of a square array
of cylindrical resonators, in which each unit-cell cylinder is
parameterized by its radius and height. Then a fast forward
dictionary search (FFDS) method was developed to find the
appropriate unit-cell structure corresponding to the desired
S-parameters in several hours with the aid of PNN.

The intelligent design processes described above are all
based on iterative methods, which have reduced the optimiza-
tion time from days to hours or minutes compared with canoni-
cal approaches. Taking full advantage of the ANNs’ data fitting
ability, multiple works have been presented to construct direct
access from the optimization target to the meta-atom structural
parameters using so-called inverse ANNs. As non-iterative
methods, well-trained inverse ANNs can directly output the cor-
responding optimization results in seconds or even in real time
when given self-defined optimization targets. As a typical case
of an inverse ANN, Qiu et al.[182] designed an ANN structure
named REACTIVE to match the relationship from the reflection
coefficients to the corresponding four-fold coding meta-atoms
represented by a 4 × 4 binary matrix. In other words, the
meta-atom structure can be efficiently predicted, as shown in
Fig. 7(b). One of the difficulties in the coding meta-atom pre-
diction is that ANNs cannot directly output binary data. As an
alternative choice, Qiu et al. let REACTIVE output the vectors
with element values between zero and one by adding a sigmoid
activation function at the end of neural networks. Then these
vectors could be discretized into one-hot versions and reshaped
into matrices with congruent shapes of 4 × 4. Although the
REACTIVE method has shown 90% prediction accuracy for
binary elements in the top 30% of testing samples, it was not
steady enough because, for one S-parameter, it could generate
only one prediction structure of the corresponding meta-atom
but had no remedial measure if this meta-atom did not satisfy
the design target after verification by simulations or experi-
ments. Also, two similar S-parameter curves in the training data-
set may correspond to distinct meta-atom structures, which
would cause one-to-many problems and worsen the perfor-
mance of the training process.

To solve the steady and one-to-many problems of inverse
ANNs, Luo et al.[183] developed a special inverse ANN structure
called a probability-density-based network (PDN). Instead of
directly outputting meta-structure parameters, PDN generates
a mixture of Gaussian distributions represented by mixing
the coefficient, mean, and standard deviation of the output
Gaussian, which indicates the likelihood of each structure
parameter. By means of extracting the local maxima in the

Fig. 7 Illustration of design flowcharts for CNN. (a) Flowchart of
the BPSO algorithm together with the prediction CNN to design
the anisotropic coding meta-atom. The nearly real-time reflection-
phase prediction of CNN accelerates immensely the whole pro-
cedure and makes it possible for simultaneous optimizations of
TE and TM responses. (b) Contrastive flowchart of the design
process of the REACTIVEmethod and the conventional metasur-
face design method. As a non-iterative method, REACTIVE could
generate the probable digital meta-atom structures in seconds
when given the design target of the reflection coefficients.
(a) Adapted from Ref. [180], Copyright 2018, with permission
from Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
(b) Reprinted from Ref. [182], Copyright 2019, with permission
from Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
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mixture of Gaussian, several candidate structure-parameter sam-
ples could be obtained and then verified by simulations or ex-
periments to pick out the optimal one. The multiple alternatives
of PDN output results can reduce the risk of invalidation.
Another approach to solving the one-to-many problem is re-
trieving the structure parameters from the well-trained PNN
by concatenating an inverse ANN at the end of PNN and con-
structing a variational auto-encoder (VAE) structure[184,185,195], as
illustrated in Fig. 8(a). The network parameters of PNN will be
fixed in the VAE training process, but the parameters of the in-
verse ANN will be updated. After proper training, the inverse
ANN can independently retrieve the relationship from the de-
sign target to meta-atom structure. However, the above-men-
tioned VAE structure cannot generate multiple candidates for
one design target, which lowers the success rate.

In the above discussions, meta-atoms or metasurfaces are
represented by structure parameters, which restricts the freedom
of design. Sajedian et al.[196] found that using the 2D image of
the meta-atom structure as the input of PNN could successfully
predict the corresponding optical properties, which means that
the meta-atom could be represented by pixelated patterns.
Inspired by this trick, generative adversarial networks (GANs),
used widely in image generation, were introduced into the in-
verse design of meta-atoms with arbitrary 2D structures[197]. As
an intuitionistic case, Jiang et al. trained a generator that accepts
the quantified design targets and normally distributed random
numbers to output the desired meta-grating patterns. The dis-
criminator is trained to distinguish the actual patterns sampled
in the training set from those fake patterns generated by the
generator, so as to indicate the generator’s learning process.
After being well trained, the generator could output multiple
patterns corresponding to one design target by inputting differ-
ent random numbers. These multiple output patterns could then
be selected by full-wave simulations to pick out the best result.
Liu et al.[197] and An et al.[198] developed another kind of gen-
erator training strategy by introducing a pre-trained PNN to
be joined to the generator, forming a VAE structure, as shown
in Fig. 8(b). As a result, the PNN made the spectrum of the gen-
erator’s output patterns conform to the design target, and the
discriminator made these patterns fit the topological features.
The generators in the above-mentioned works had added ran-
dom noises to the input to increase the diversity of the output
patterns. Further, in the training process of GAN, Ma et al.[199]

encoded meta-atom patterns together with their corresponding
optical responses (design targets) into a latent space, as illus-
trated in Fig. 8(c). Then a well-designed sampling strategy
was designed to sample the data from this latent space as part
of the inverse generator’s input to guarantee the diversity of the
design results. An interesting phenomenon was observed in that
the extraction features from meta-atoms with similar geometri-
cal characteristics assembled together in latent space, which is
analogous to the clustering of word vectors in natural language
processing[200]. This phenomenon provides some interpretability
to the feature-extraction ethology of prediction and inverse
ANNs.

To summarize, great progress has been made in meta-atom
designs using AI, where customized machine-learning algorithms
are adopted to realize both forward design and inverse design, and
high consistency is witnessed between prediction and simulation
results. The algorithms show intrinsic superiority over manual
tuning, especially in multi-dimensional space optimization and
multi-sample output circumstances. However, there are still some

limitations that impede wide promotion. So far, the proposed al-
gorithms, though representing summits in each field, can tackle
only the forward or inverse design problem for one specific struc-
ture with limited design freedom. Though methods including
binary pixel patterns[196–198] alleviate the scarcity of freedom to
some extent, difficulty is still encountered when new dimensions
are explored in the design, which requires the network to be
trained again with extra simulation time. Constraints on param-
eter selection and scope of automatic design are other defects.
Discrete (selectable material dielectric, pixel binarization) and
continuous (structural parameter) values sometimes need to be
simultaneously fed into or extracted from the networks. In the
inverse design, the predicted structure may be physically unreal-
izable due to out-off-scope structural parameters. Such circum-
stances will compromise network performance and lower the
matching success rate. In addition, iterative algorithms could po-
tentially converge into a local minimum, which may attribute to
an insufficient dataset, or strong local resonant points may be
missed during the optimization process.

We envision that the tendency for automatic meta-atom de-
sign lies in data sharing, task complication, and migration learn-
ing. First, a large-scale dataset should be built and shared,
covering the versatile meta-atom structures ranging from micro-
wave frequency to optical. The collective dataset not only
speeds up algorithm development, but also facilitates the test
benchmark for future proposed algorithms. Second, a more
complicated and customized optimization target for meta-atom
responses could be defined. So far, the automatic designs for
meta-atoms focus mostly on phase/amplitude manipulations
at a single frequency. A new meta-atom structure with extreme
performance or innovative features could be explored using AI
algorithms. For instance, multi-bit meta-atoms exhibiting uni-
form performance in ultra-wideband or multi-frequency points
could benefit from fast AI algorithms. Active and non-linear
performance could also be taken into account during the training
process. Furthermore, new methods should be proposed to in-
tegrate human expertise into neural networks or other algo-
rithms in automatic designs. Currently, human guidance is
limited to key parameter selection and parameter bound setting.
It means that once the parameter specification is given, the user
will have to choose a meta-atom structure prototype, determine
the key parameters together with a permissible range in auto-
matic designs, and then apply the aforementioned versatile
AI algorithms. In the future, the algorithm could replace humans
to perform such selection tasks. Like the discriminator in the
GAN network, human expertise could intervene in the design
process directly through a loss function or indirectly to prevent
the network from converging into local minima or skipping
strong resonant points.

3.3 Metasurface Pattern Design Using Artificial
Intelligence

As discussed in the introduction section, the design of a whole
metasurface is more difficult than that of a meta-atom by using
machine-learning algorithms, and very limited research has been
conducted on this topic. Here, we present some examples to de-
sign digital coding metasurfaces using AI technology. The coding
metasurfaces consist of digital meta-atom arrays that exhibit vari-
ous unique macroscopic phenomena by manipulating the EM re-
sponses of meta-atoms. Taking the 1-bit coding metasurface as
an example, the states of meta-atoms are usually designed by
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iterative optimization algorithms, such as GA[201], particle swarm
optimization[202], and the Gerchberg–Saxton (GS) algorithm[203].
These iterative optimization algorithms can reach the design tar-
gets but are not efficient enough to meet real-time requirements in
some specific applications such as real-time holography[204].
Inspired by the real-time inverse design ability of the deep-learn-
ing method, inverse ANNs have gained more and more attention
for designs of coding metasurfaces. Shan et al.[205] trained a su-
pervised CNN by learning the relationship between radiation pat-
tern properties and coding states of a 1-bit coding metasurface.
The training dataset was made of coupled samples consisting of
parameters of single and dual beam patterns and their correspond-
ing coding sequences or patterns obtained by executing backpro-
pagation or GA. As a result, the supervised CNN can provide
coding sequences or patterns that generate the desired beam pat-
terns at the speed of milliseconds. Qian et al. recently showed a

novel self-adaptive microwave cloak[48] realized by a coding
metasurface controlled by a pre-trained ANN, as shown in
Fig. 9(a). This coding metasurface should have a rapid response
to the incident wave and generate well-designed reflection EM
responses to conceal the inner object, which demands a real-time
inverse design ability from the desired EM responses to the bias
voltages of the metasurface’s units. The inverse design method
needs to be executed in miniaturized edge devices. The above
two restrictions make the iterative design method a nearly impos-
sible choice. To solve the problem, Qian et al. trained a small
fully connected ANN to learn the mapping from the needed re-
flection spectra together with the features of incident waves to the
corresponding bias voltages of meta-atoms. Experimental results
showed that the metasurface cloak controlled by the simple ANN
was effective and could react to the ever-changing incident waves
in a millisecond.

Fig. 8 Schematic diagrams of inverse ANNs. (a) Schematic diagram of an inverse ANN retrieving
the relationship between spectrum response and meta-atom structure. After being well trained, the
inverse ANN could directly output meta-atom structures with corresponding input spectrum re-
sponses. (b) Flowchart of GAN for inverse design of 2D meta-atoms with arbitrary patterns. The
pre-trained PNN acted as a simulator that could form a VAE when concatenated to the generator.
(c) Schematic diagram of an inverse-design GAN with latent space. A well-designed sampling strat-
egy was designed to sample data from this latent space as parts of the inverse generator’s input
to guarantee the diversity of design results. (a) Adapted from Ref. [66], Copyright 2019, with per-
mission from American Chemical Society. (b) Reprinted from Ref. [197], Copyright 2018, with
permission from American Chemical Society. (c) Reprinted from Ref. [199], Copyright 2019,
with permission from Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
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From the above discussions, we note that the deep-learning
methods for designing digital coding metasurfaces are all super-
vised methods, which means that the training of ANNs depends
on a large number of coupled samples. Such training samples are
obtained from either full-wave simulations or experimental mea-
surements, which requires much time and effort, posing a high
obstacle to researchers. To solve the problem, Liu et al.[88] recently
developed a physics-assisted unsupervised GAN method to de-
sign the corresponding hologram of a 1-bit coding metasurface
in real timewhen the target holographic imagewas given, as illus-
trated in Fig. 9(b). By using EM propagation formulas to con-
struct forward mapping from the metasurface hologram to the
corresponding holographic image, the generator responsible for
the inverse design could be trained in an unsupervised VAE struc-
ture. The training target of this VAE was chosen to make the out-
put image as similar as possible to the input one, so that arbitrary
images could be used to train the generator without preparing

their corresponding holograms. A discriminator was added in
the training process to make the output images of VAE more
topologically similar to the input. Experimental results show that
the metasurface holograms designed by the trained generator
have better imaging quality than those from the conventional
GS algorithm[88]. It is foreseeable that more physics-assisted
deep-learning methods will be developed for intelligent designs
of the whole metasurface, enhancing the interpretability and gen-
eralization ability of PNN and inverse ANNs.

4 Intelligent Metasurfaces

4.1 Information Metasurface Integrated with Machine-
Learning Algorithm

In the above section, we discussed the intelligent designs of
metasurfaces by using machine-learning and deep-learning

Fig. 9 Intelligent design of the metasurface pattern. (a) Experimental setup of metasurface cloak
controlled in real time by a pretrained ANN, which can learn the mapping from the needed reflec-
tion spectra together with the features of the incident wave to the corresponding bias voltages of
the meta-atoms. (b) Schematic diagram of the physics-assisted unsupervised GAN for real-time
holography. The generator together with the EM propagation process makes up the VAE structure.
A discriminator was used to improve the imaging quality of the generator. (a) Adapted from
Ref. [48], Copyright 2020, with permission from Springer Nature. (b) Reprinted from Ref. [88],
Copyright 2021, with permission from Optica Publishing Group, under a Creative Commons
Attribution 4.0 International License.
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algorithms, including designs for both meta-atoms and meta-
atom arrays. However, AI may have a closer connection to in-
formation metasurfaces to make them smarter, which yields in-
telligent metasurfaces. Here, we first investigate information
metasurfaces integrated with a machine-learning algorithm
and their application in microwave imaging. The microwave im-
ages have been widely deployed in various scenarios, while the
limited imaging rate, complicated reconstruction algorithm, and
high-cost hardware remain bottlenecks for performance im-
provement and commercial usage. Also, the huge data-stream
makes microwave imagers ineffective for complicated in situ
sensing and monitoring. To address these problems, Li et al.
purposed a real-time digital-metasurface imager that utilizes
PCA to guide the optimized measurement modes[89].

As the recent advanced research in machine learning has
demonstrated, image data can be highly compressed and recon-
structed virtually and flawlessly under the strategy of feature
extraction. It is therefore inferred that, instead of acquiring each

pixel in the image collection round, a limited number of feature
patterns will be sufficient in the whole image reconstruction and
analysis, which reduces the burden for both measurements and
data transmissions. As shown in Fig. 10(a), the original raw im-
ages (vector x) are linearly transferred (compressed) into lower
dimension data y. Here, the transformation matrix H is gener-
ated through the PCA algorithm, which guarantees minimum
information loss between raw data through transformation,
and hence a solid reconstruction performance was reached from
the collected data.

To realize machine-learning-based measurement modes in
the EM domain, a 2-bit digital coding metasurface is designed
and fabricated to dynamically manipulate incident waves, as
illustrated in Fig. 10(b). In each meta-atom, four PIN diodes
are individually controlled, so that the meta-atom exhibits four
digital states relating to its phase responses for the incident wave
at the centering frequency, i.e., state 0 (0°), state 1 (90°), state 2
(180°), and state 3 (270°). Through proper mappings between

Fig. 10 Reprogrammable metasurface imager integrated with machine-learning algorithm.
(a) Schematic of the machine-learning algorithm. (b) Meta-atom structure and the metasurface.
(c) Real-time imaging through a wall. (d), (e) Experimental measurements of different body ges-
tures and the related imaging results. (f) Classification rate of different algorithms. Adapted from
Ref. [89], Copyright 2019, under a Creative Commons Attribution 4.0 International License.
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the source field and near field, the coding patterns are deter-
mined for each measurement mode and loaded to the metasur-
face periodically at a maximum clock rate of 64 Hz, hence
building up the real-time metasurface imager, as demonstrated
in Fig. 9(c).

Figures 10(d) and 10(e) demonstrate the imaging capabilities
of the proposed imager. From the reconstructed results shown in
Fig. 10(e), the subject’s body gestures can be clearly discerned,
even if the subject is blocked by a paper wall. A pair of red
plastic scissors, simulating a dangerous target, is tied to the sub-
ject, which is successfully detected through the imager. Note
that each image is collected under 400 measurement modes,
which is much smaller than the pixel number of 8000, equiv-
alent to a compression rate of 95%. Experiments are also con-
ducted to verify the recognition ability of the imager. Three
categories of actions were chosen for classification, i.e., stand-
ing, bending, and raising arms. In experiments, 60 measurement
modes were designed based on the specific image sets, and
Fig. 10(f) depicts the relationship between the accuracy rate
and measurement numbers. Based on the curves, the classifica-
tion performance of PCA is much better than that of random
projection, which quickly approaches the ideal result without
using more measurements. It is worth pointing out that the com-
pressed data are used as raw data for the classification task, and
the classification accuracy has reached its upper limit when the
first 25 main components are collected. With the help of the
CNN algorithm, the electronically controlled metasurface im-
agers would hopefully extend the venues for fast data acquisi-
tion and processing to reach intelligent surveillance.

4.2 Information Metasurface Integrated with Multiple
Convolutional Neural Networks

Remarkable progress has been made in recent years using CNNs
to achieve state-of-the-art results on computer vision tasks, such
as object detection and image processing. The great success of
CNN relies on its ability to explore the spatial relationship using
so-called kernels, which will extract the full image to generate
the feature information. It gives CNN the capacity to develop an
internal representation of a high-dimensional image with param-
eter sharing. Therefore, the CNN architecture significantly re-
duces the number of parameters to be trained in comparison
with a fully connected neural network, contributing to faster
convergence speed and a more compact model.

Figure 10 shows that the information metasurface integrated
with a CNN algorithm has successfully realized an intelligent
microwave imager. If the information metasurface involved a
series of CNN algorithms, more intelligent devices would be
produced. In fact, intelligent sensing has proved to be of great
benefit to human beings without intruding into people’s normal
lives and privacy, or burdening people with any active devices or
identification tags, as seen in Fig. 11(a). However, the conven-
tional smart sensing devices designed for the Internet of Things
(IoT) and cyber physical systems (CPSs) are either function-de-
signed without adaption ability or too complicated and expen-
sive with excessive peripherals. Recently, Li et al. presented a
smart microwave metasurface imager and recognizer, called a
microwave camera[87], which is empowered by a series of
ANNs for adaptively controlling data flow and automatically
identifying targets. Experiments have demonstrated the meta-
surface’s multi-functionalities of imaging, gesture recognition,
and respiration monitoring.

Figure 11(b) illustrates the overall structure of the intelligent
metasurface integrated with deep-learning techniques. The 32 ×
24 reflective digital metasurface, whose dynamic frequency re-
sponse is shown in Fig. 11(c), manipulates the source signal and
functions as an intelligent sensing probe. The intelligent meta-
surface has two operational modes: active and passive.
Compared with the traditional methods of modeling and analyz-
ing the characteristics of EM environments, the ANN-based
method is more efficient in terms of computational cost, insen-
sitive to background or surroundings, and trainable for various
scenes, and hence is consequently more easily deployed.

Based on the intelligent metasurface, two specific tasks are
performed, i.e., gesture recognition and respiration monitoring
with different CNN modules. The collected microwave data first
go through the IM-CNN-1 imaging network, which transfers the
raw data into the real-time body image, as shown in the right two
insets in Fig. 11(d). Then, the faster R-CNN is performed to find
the region of interest (ROI) from the whole image, as marked by
the red rectangle in the two insets. Then, an adapted GS algo-
rithm is performed to calculate the optimized digital coding pat-
terns of the metasurface to realize beam focusing on the target
area, for instance, the hand for sign-language recognition or the
chest for respiration monitoring. Finally, the collected micro-
wave data are transmitted to a specific network for analyses
in each function mode. To be specific, human breathing is iden-
tified by a time–frequency domain analyzer, and another CNN
network, IM-CNN-2, processes the data to recognize the hand
design.

From the plotted results, the subject’s respiration rate is
around 0.28 Hz. The deviant state is also clearly distinguished
when the subject is asked to hold his breath. The accuracy rate
of hand gesture recognition reaches 96% under the 10 catego-
ries, six of which are illustrated in the insets. The sign-language
rate of the human hand and respiration rate are of the order of
10–30 bit/s, which is significantly slower than the switching
speed of the digital coding patterns by a factor of 105.
Therefore, the intelligent metasurface has the potential to fulfill
more sophisticated tasks in the future, including rip reading and
human-mood recognition.

4.3 Information Metasurface Integrated with Sensor and
Onsite Algorithm

As we discussed above, most programmable metasurfaces focus
mainly on the manipulation of EM waves, in which human
beings must be involved to make instructions. To further attain
smarter functionalities of metasurfaces to make decisions by
themselves, the metasurface should have the sensing ability
to collect essential information and make a decision. Here,
we review two smart metasurfaces with intelligent sensing func-
tions. Figures 12(a) and 12(b) schematically demonstrate the
metasurfaces with self-adaptively reprogrammable functional-
ities proposed by Ma et al.[85], in which multiple sensors, a mi-
crocontroller unit (MCU), and FPGA are integrated to construct
a closed-loop sensing feedback system for automatic decision
making. In this case, the authors assumed that the position of
the satellite was relatively fixed since the distance between them
was very far. When the spatial posture of the aircraft changes,
the gyroscope sensor will send posture data to MCU, which
drives the metasurface to steer the EM beam direction to the
satellite. When other specific features and the environments
around the metasurface are changed, such as light intensity,
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humidity, and temperature, the integrated sensors can promptly
detect the variations and send the corresponding information to
MCU. Subsequently, MCU with a feedback algorithm automati-
cally processes all sensing information and output instructions
to drive FPGA to adaptively update the digital coding sequences
or patterns in real time, so that the metasurface can perform dif-
ferent functions without human instructions.[85]

Figures 12(a) and 12(b) conceptually demonstrate an exam-
ple of a satellite-communication scenario with an airplane
equipped with a smart metasurface, in which a gyroscope sensor

is integrated. The embedded gyroscopic sensors can instantane-
ously acquire the varied spatial orientations �Δθ;ΔΦ� of the
metasurface and send the corresponding information when
the flying airplane changes its spatial positions in the sky.
The original beam deflection direction �θ;Φ� becomes the
changed direction �θ� Δθ;Φ� ΔΦ�. Then the solution of
the digital coding pattern with beam deflection �θ;Φ� is
changed to the digital coding pattern with beam deflection
�θ − Δθ;Φ − ΔΦ�, ensuring that the radiation beam is always
pointed to the satellite. The fast inverse design algorithm loaded

Fig. 11 Intelligent microwave imager and recognizer. (a) Application scenario of the intelligent
metasurface. (b) System architecture of the intelligent metasurface. (c) Meta-atom responses
at different digital states. (d) Programmable manipulations of EM focusing for different functions
including hand gestures and vital inspection. Adapted from Ref. [87], Copyright 2019, with per-
mission from Springer Nature, under a Creative Commons Attribution 4.0 International License.
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in MCU can quickly calculate the desired coding pattern. To
obtain higher beam-scanning accuracy, the coding sequence
of the beam deflection angle is further decomposed into two
coding subsequences with different beam deflection angles in
the proposed algorithm by the following formula:

θ � arcsin

�
λ0
n1p

� λ0
n2p

�
: (5)

In addition, the error analysis functions are subsequently de-
signed to determine the best coding length n1 and n2 to acquire
the final coding patterns. Due to the high-accuracy and high-
speed algorithm in MCU, the metasurface can precisely radiate
the EM beam in the direction of the satellite to construct good
communications between the airplane and the satellite in real
time[85]. In addition to the satellite communication scenario,
the application scenarios can be greatly broadened by integrat-
ing heat sensors, humidity sensors, light sensors, height sensors,
and other sensors into the smart metasurface. For instance, a
light sensor can obtain the intensity percentage by detecting
the visible light, and the smart metasurface will react to different
light intensities, so that the metasurface can generate a dual-
beam scattering pattern for the bright condition and reduction
of the radar cross section (RCS) for the dark condition[85].
The smart metasurface with self-adaptively reprogrammable
functions will further promote intelligent devices and systems.

The above-mentioned smart metasurfaces with multiple sen-
sors can sense and manipulate only different targets. Further, a
smart sensing metasurface with self-defined functions was
presented[86] that can simultaneously achieve sensing and
manipulation of the same object. As schematized in Fig. 12(c),
the smart sensing metasurface is integrated with sensing units
and executing units, in which the sensing units can detect the
power levels of incident waves and the executing units will

perform the functions of wave manipulations under different po-
larizations. The incident-wave energies of the sensing units can
penetrate from the top metal patch to the detecting circuit on the
bottom by a via-hole along x or y axis, and then are transformed
to different DC voltages (0.15–0.3 V) by an RF power detector
(LTC5530). The corresponding DC voltages can be perceived
by MCU, and the data are simultaneously transferred to
FPGA. Various digital coding patterns for incident waves with
different polarizations can be implemented by controlling the
executing units after the sensing data are processed by FPGA
with a pre-loaded algorithm. Thus, a smart sensing metasurface
with self-defined functions in dual-polarization modes can sense
and manipulate scattering fields simultaneously.

5 Programmable Artificial Intelligence
Machine

5.1 Neural Network Hardware by 3D-Printed
Metamaterials

In the above section, AI collaborates with information metasur-
faces as software. Here, we introduce hardware collaborations.
Recently, to explore the new architecture of the computing hard-
ware of AI, various optical neural network hardwares have been
reported, yielding faster computing speeds and lower energy
consumption. In 2018, Lin et al. proposed an all-optical
D2NN for machine learning[147], as depicted in Figs. 13(a)
and 13(b). The multi-layer neural network is established based
on five layers of optical metamaterials, fabricated using 3D
printing technology. When coherent light passes through the in-
put layer and irradiates the learning layers, diffraction behaviors
of the pixel blocks between the layers, which follow the
Huygens–Fresnel principle, have network models similar to
the fully connected neural network, as shown in Fig. 13(a).
The transmission coefficient of each pixel can be designed,

Fig. 12 Smart metasurfaces with self-adaptive capabilities. (a), (b) Conceptual illustration of self-
adaptively smart metasurfaces. (c) Smart sensing metasurface. (a), (b) Adapted from Ref. [85],
Copyright 2019, with permission from Springer Nature, under a Creative Commons Attribution 4.0
International License. (c) Reprinted from Ref. [86], Copyright 2020, under a Creative Commons
Attribution 4.0 International License.
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which is considered as a multiplicative bias term in an equiv-
alent neural network. Therefore, the forward propagation of
light in the presented network is intrinsically similar to the for-
ward-propagation computing of an all-connected neural net-
work. More importantly, forward propagation at the speed of
light enables ultra-fast network computing capability and
ultra-low power loss due to its passive structure. Compared with
traditional electronic chips, its computing power consumption
and energy efficiency have significant advantages. Such a learn-
able network is trained theoretically in computers by adjusting
the transmission coefficients of pixels, using the error backpro-
pagation method. Input and output optical fields are demon-
strated in Figs. 13(c) and 13(d), where the detector regions
are marked with red dashed lines. To prove the performance
of D2NNs, the authors trained the device for image recognition
based on the MNIST dataset, in which 55,000 images are used
for training and 10,000 for testing. Classification accuracy of
91.75% has been achieved, as shown in Figs. 13(e) and 13(f).

In addition to the optical neural networks that propagate in
3D form, diffractive neural networks in planar forms have also
been proposed. Based on some control structures for 2D light
fields[206–210], such optical neural networks can achieve good

performance. In 2019, Xu et al. proposed a planar-form diffrac-
tive neural network[211], as illustrated in Fig. 13(g), in which light
waves are diffracted in a layer of a micro-nano-fabricated silica
photonic medium. The wavefront propagation behaviors of the
light waves are similar to the signal transmissions in neural net-
works. The researchers conducted training and validation using
the handwritten image dataset and achieved a prediction accu-
racy of over 79%.

5.2 Programmable Artificial Intelligence Machine

Although all-optical diffractive neural networks have been dem-
onstrated using 3D and planar structures with excellent perfor-
mance[211], they have fixed functions once they are fabricated,
in which the training process is still performed on conventional
computers. That is to say, these diffractive neural networks
are unprogrammable. In 2021, Zhou et al. further presented a
reconfigurable optical diffraction processing unit (DPU)[154].
They employed a series of optical devices such as digital micro-
mirror devices (DMDs), spatial light modulators (SLMs), and
complementary metal–oxide–semiconductor (CMOS) sensors
to form a one-layer programmable optical network, as shown

Fig. 13 Diffractive deep neural networks. (a), (b) All-optical diffractive deep neural networks
(D2NNs) based on 3D-printed materials. (c), (d) Input and output optical fields, where the detector
regions are marked with red dashed lines. (e), (f) Confusion matrix and energy distribution per-
centage for 10,000 different handwritten digits. (g) Nanophotonic media for artificial neural infer-
ence. (h) Schematic of DPU. (i) Experiment of DPU. (a)–(f) Adapted from Ref. [147], Copyright
2018, under a Creative Commons Attribution 4.0 International License. (g) Reprinted from
Ref. [88], Copyright 2021, with permission from Optica Publishing Group, under a Creative
Commons Attribution 4.0 International License. (h), (i) Adapted from Ref. [154], Copyright
2020, with permission from Springer Nature.
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in Figs. 13(h) and 13(i). Using the programmability of the large-
scale light reflection switch array of digital optical micromirrors,
the light source can be precisely controlled. A multi-layer optical
neural network was then simulated by feeding the output of this
one-layer programmable optical network into its input port with
the aid of an electronic circuit, which simulates an RNN structure.
The multi-layer optical neural network was trained and tested
using the MNIST dataset and achieved a blind-testing accuracy
of 97.6%. This scheme opens a new path to realize the programm-
ability of large-scale diffractive neural networks.

However, the above work was based on a one-layer program-
mable optical network, and the multi-layer optical neural net-
work had to be performed with the help of electronic chips
and the training process was conducted in a computer[154], which

weakens the advantages of light-speed calculations in D2NNs.
To solve the problem completely, Liu et al. proposed a fully
programmable AI machine (PAIM) using multiple layers of in-
formation metasurfaces[155], which can directly receive EM
waves in free space, and achieve direct calculations in wave
space by adjusting the transmission gains of meta-atoms with
a wide dynamic control range. Moreover, the characteristics
of light-speed calculation are maintained in the fully program-
mable diffractive architecture, which significantly expands its
application potential. For experimental demonstrations, a proto-
type with five programmable layers is designed and fabricated
with various functions including programmable image recogni-
tion, automatic beam focusing, and wireless communications, as
illustrated in Fig. 14.

Fig. 14 Programmable artificial neural network and its image recognition. (a) PAIM structure com-
posed of multi-layer information metasurfaces. (b) Diffractive illustration of PAIM. (c), (d) Image
recognition of oil paintings for landscape and portraiture. Adapted from Ref. [155], Copyright 2022,
with permission from Springer Nature.
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PAIM imitates the inhibition and amplification of neurotrans-
mitters by human brain neurons through meta-atoms, and makes
use of multi-layer cascaded information metasurfaces to simulate
the neural network, in which the propagation of EM waves in
space is used to simulate the connection between neurons, as
illustrated in Figs. 14(a) and 14(b). The fully connected character-
istic of the network depends on the distribution of the energy
emitted by the meta-atom of the upper layer to illuminate the sur-
face of the network of the next layer. This distribution is the result
of meta-atom energy transmission in free space, including the
path loss and energy differences in different radiation directions.
Each node (i.e., meta-atom) shown in Fig. 14(a), integrated with
amplifiers, can be programmed by controlling the bias voltage.
Therefore, the transmitted EM waves of each meta-atom can
be controlled independently to achieve the particular weight dis-
tribution. The following equation demonstrates the numerical re-
lationship between electric fields at adjacent layers:

Ei�1 � Wi�Ei ⊙ Ti�; i � 0; 1; 2;…;M; (6)

in which Ei�1 and Ei are the complex fields on the ith and
�i� 1�th planes in the form of vectors, and M is total layer

number; Wi is the fixed propagation matrix between nodes at
the ith and �i� 1�th planes that can be derived from the
Huygens–Fresnel principle;⊙ is the Hadamard product; and vec-
tor Ti represents the complex transmission coefficients of the ith
layer, which can be tuned through the external bias voltage.
Equation (7) shares a great similarity to the forward propagation
in a fully connected network, which is depicted as

ai�1 � f�Wiai � bi�; i � 0; 1; 2;…;M: (7)

In addition, the multi-layer abstract processing mechanism of
information makes the PAIM not only a neural network simu-
lator, but also a direct processing device for the microwave sig-
nal. Owing to its fast on-site programmability, the PAIM
demonstrates a number of functions, including image recogni-
tion, beam focusing based on reinforcement learning, and wave-
space communication codec with a denoising function. The
examples shown in Figs. 14(c) and 14(d) present the image
recognition between landscape and portraiture. The input image
is first pixelated and gray-scaled to form a mask. Then the input
field is formed by the radiation of incident EM waves, and spe-
cific energy distribution is constructed during EM propagation

Fig. 15 Encoder and decoder in the CDMA scheme and its communication experiment using
PAIM. (a) Schematic of CDMA scheme using PAIM, where the first layer and the last four layers
are assigned as encoder and decoders, respectively. (b) Experiment of image transmission using
the presented CDMA scheme and PAIM. Adapted from Ref. [155], Copyright 2022, with permis-
sion from Springer Nature.
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inside PAIM. Finally, it is determined whether the image is a
landscape or a portrait through the energy distribution of the
output layer.

In addition to intelligent image recognition, the proposed
PAIM can also realize information transmissions based on
code-division multiple access (CDMA) schemes, as depicted
in Fig. 15(a). In this scheme, four user codes are designed
and input by the first programmable layer, which is regarded
as an encoder. The other four layers, as decoders, will guide
the energy of the user codes into corresponding directions,
which are sensed by the four horn antennas on the receiving
plane. The weight distribution of the decoding network is
trained to recognize whether each user code is sent or not. It
should be noted that the decoding target is to distinguish four
close energy inputs, which may cause severe inter-symbol inter-
ference. Therefore, based on this decoder, multiple user codes
are transmitted with low interference in a very small space.
Based on the CDMA scheme, a wireless communication proto-
type is further established, as shown in Fig. 15(b). A receiving
antenna array, integrated with analog-to-digital conversion
(ADC) and FPGA, is placed on the receiving plane to detect
the electric field energy value at the receiving antenna position
corresponding to each user code. AM is used for communica-
tion signal modulation. Specifically, in a certain clock interval,
when a high level is detected at the receiving antenna position
corresponding to a certain user code, the binary information
transmitted by this user in the current clock interval is “1,”
and otherwise “0.” Since the four user codes can be transmitted
independently in PAIM, we can transmit four signals simulta-
neously in the same channel. If different user codes transmit
different parts of the same picture, then the transmission rate
will be increased by four times. A badge image of the State
Key Laboratory of Millimeter Waves at Southeast University
with 100 × 100 binary pixels was transmitted and tested,
achieving a transmission error rate of 0.52%. As a comparison,
the image transmission experiment was also conducted by re-
moving the decoding part of PAIM, in which 49.02% of the pix-
els were not successfully received, indicating that the user inter-
symbol interference becomes very significant after removing
the PAIM.

We remark that the proposed PAIM has realized the first sys-
tem for programmable processing, light-speed calculation of AI,
wireless sensing, and communications in microwave space, and
can find wide applications in intelligent radar and new-genera-
tion communication systems after further miniaturization and
intensification. For instance, the deployed PAIM in radar sys-
tems could perform the subject recognition task directly in
the microwave domain and substitute conventional Tx/Rx mod-
ules together with the digital processing unit. Owing to the in-
stantaneous speed of EM wave propagation, high-dimension
matrix multiplication is performed at the speed of light, building
up a real-time processing system with negligible delay. Based
on the proposed programmable platform, we also envisage that
the training process of the neural network could be implemented
directly on our PAIM architecture. The conventional backpro-
pagation algorithm, which optimizes the trainable parameters
inside the neural network iteratively, usually costs huge calcu-
lation resources and time in the design process. We hope that the
algorithm could be migrated directly into our platform since the
proposed PAIM has weight-programmable and sample injection
capacity. However, further research is needed to explore a fea-
sible method to extract electrical fields in the intermediate layers

of PAIM architecture, which are crucial data in backpropagation
algorithms.

6 Conclusion
The digital coding and programmable metasurfaces proposed in
2014 not only combine EM physics with digital information, but
also incorporate the idea of encoding into the design of EM
functions and the representation of information, thus forming
a new direction of information metasurfaces. During this period,
the wide application of AI has given birth to related research on
the intelligent design of metasurfaces, which is also closely re-
lated to the future development of information metasurfaces. In
this paper, we first reviewed the recent advances in information
metasurfaces from information theories and operations to pro-
grammable designs and space–time-coding strategies. We also
exhibited the intelligent designs of metasurfaces using machine-
learning algorithms. Then we introduced the research on intel-
ligent metasurfaces based on a combination of information
metamaterials and AI. Finally, we presented recent develop-
ments of all-optical D2NNs in both static and reprogrammable
ways.

We envision that future research on information metasurfaces
will be focused on the reconstruction of traditional Shannon in-
formation theories by deeply combining digital information
with EM fields. In particular, exploring new modulation forms
that can combine multiple modulations for next-generation
communication systems in the time domain, frequency domain,
spatial domain, and polarization domain may be an important
direction. Since most current work on information metasurfaces
is in the microwave band, the higher working frequency band
(even in the optical frequency band) will be one of the important
directions for future research. Low-frequency passive structures
can be used for reference in high-frequency designs, but the tun-
able devices widely used in the microwave band are difficult to
implement in the terahertz and optical frequency bands.
Therefore, to achieve a programmable design in the optical fre-
quency band, some new optical devices are required. For the
intelligent design of meta-atoms, in addition to the current main-
stream pixelation methods, more general and accurate intelli-
gent design methods are urgently needed. We believe that in-
depth analyses and deconstructions of the EM properties of spe-
cific structures may be the key to improve the performance of
future algorithms, and may also help reduce the database
dependence of the algorithms. Moreover, more precise and in-
telligent design methods for metasurface patterns are also worth
looking forward to. For new types of artificial intelligent ma-
chines, the current programmable solutions are relatively pre-
liminary, and more powerful nonlinear programmable forms
will inject new vitality into the research on this hardware of deep
neural networks. In addition, intelligent metasurfaces as neural
networks still demand programmable capacity with a larger
computing scale.
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